a b c d e f g h i j k l m n o p q r s t u v w x y z    0 1 2 3 4 5 6 7 8 9 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я 

Скачать Graph-Theoretic Techniques for Web Content Mining (Machine Perception and Artificial Intelligence) (Series in Machine Perceptio бесплатно

Adam Schenker, Horst Bunke, Mark Last, Abraham Kandel, "Graph-Theoretic Techniques for Web Content Mining"
World Scientific Publishing Company | 248 pages | 2005 | ISBN: 9812563393 | PDF | 10 MB

This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors. Through the use of graph distance — a relatively new approach for determining graph similarity — the authors show how well-known algorithms, such as k-means clustering and k-nearest neighbors classification, can be easily extended to work with graphs instead of vectors. This allows for the utilization of additional information found in graph representations, while at the same time employing well-known, proven algorithms.


Посетители, находящиеся в группе Гости, не могут оставлять комментарии в данной новости.