Имя:
Пароль:


a b c d e f g h i j k l m n o p q r s t u v w x y z    0 1 2 3 4 5 6 7 8 9 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я 

Скачать Алгебра и геометрия интегрируемых гамильтоновых дифференциальных уравнений бесплатно

Алгебра и геометрия интегрируемых гамильтоновых дифференциальных уравнений


Название: Алгебра и геометрия интегрируемых гамильтоновых дифференциальных уравнений
Автор: Трофимов В.В., Фоменко А.Т.
Издательство: Наука
Год издания: 1985
Страниц: 453
Язык: русский
Формат: pdf
Качество: хорошее
Размер: 17 Мб

Посвящена интересному и актуальному направлению,,бурно развивающемуся в последние годы, в рамках которого открыты важные методы интегрирования гамильтоновых уравнений и получены новые результаты о геометрической структуре интегрируемых уравнений. Большинство вопросов впервые изложены в виде, доступном для широкого круга специалистов.
Цель данной книги — доступно рассказать о некоторых новых методах интегрирования гамильтоновых дифференциальных уравнений на симплектических многообразиях. Проблема интегрирования дифференциальных уравнений как обыкновенных, так и в частных производных является классической. К настоящему времени в математике имеется достаточно мощный арсенал различных средств, используемых при интегрировании уравнений. Выбор средств и методов, которые используются при решении конкретных задач, возникающих, например, в геометрии, механике или математической физике, сильно зависит от того, какой смысл мы вкладываем в выражение "решить уравнение". Например, если искать решение в каком-нибудь функциональном пространстве, то естественно привлекать методы функционального анализа. Выделим три аспекта в изучении дифференциальных уравнений: а) явное интегрирование; б) качественные методы; в) интегрируемость по Лиувиллю.
Традиционный подход к изучению свойств решений дифференциальных уравнений состоит в том, что сначала явно определяют полное множество решений и лишь потом анализируют их свойства. Именно так поступали Лежандр, Лагерр, Бессель, Эрмит при изучении дифференциальных уравнений второго порядка. Однако, помимо уравнений данного типа, в различных приложениях возникают линейные или нелинейные уравнения выше второго порядка. Возникает вопрос о возможности отыскания полного набора решений для качественного описания поведения общих решений уравнений, моделирующих интересующую нас систему.
Для научных работников — математиков, физиков, механиков, аспирантов и студентов соответствующих специальностей. Может быть использована как пособие по специальным курсам: симплектическая геометрия, интегрируемые системы и др.

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии в данной новости.
]